Question:

I am interested in a model containing an interaction between two L1-predictors and one L2-predictor. This is the model:
within $=\mathrm{xw} \mathrm{xw}$;
between $=z$;
model:
\%within\%
y on x w;
sly on xw;
\%between\%
y on z;
[s];
son z ;
y with s ;
How can I plot the interaction and calculate simple slopes adapting the input from example 9.2b? I would like to calculate slopes for low/ high values of w and z .

Thank you.

Answer:

You can just play with the regression equations for your model:
$y=a _+b 1^{*} x+b 2^{*} w+b 3 j^{*} w+$ error
$a _=a+g 1^{*} z+e r r o r$
b3_j=b+g2*z+error

Here a_{a} jis your random intercept which appears as Y on Between and b3 $\mathbf{~} \mathbf{j}$ is your random slope s in the regression of y on the xw interaction. Plugging the last 2 equations into the first, you have
$y=a+g 1^{*} z+b 1^{*} x+b 2^{*} w+\left(b+g 2^{*} z\right)^{*} x w+$ error terms,
where the terms involving x can be summarized as
$\left[b 1+\left(b+g 2^{*} z\right)^{*} w\right]^{*} x$.

That would be the simple slope that can be evaluated as a function of x for different combinations of values of z and w. This can be done like the plot of ex $9.2 b$ where you just have a different simple slope formula as given above and you have not only 2 expressions you want to plot but perhaps 4 (low/high z combined with low/high w).

